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Let Y be a flat d-manifold and g a locally expansive n-fold cover. Let
(X, ) =1lim(Y,g), i.e.

X ={(o,y1,--)lyi € Y,g(yi+1) = yi}

o((y0,¥1,¥2,---)) = (8(%0),8(¥1),&(y2), ) = (g(30), Yo, y1, - - -)
0 (yo, 1,52, - -) = (Y1, Y2, - )
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lim o0 d(™"(x), 0™ "(y)) = 0




Given x,y € X, we say x ~, y are unstably equivalent if
lim o0 d(™"(x), 0™ "(y)) = 0

® Q:Given x = (x0, x1,...),¥y = (Yo, y1,...) € X = I'@(Y,g), when is
X~y y?




Given x,y € X, we say x ~, y are unstably equivalent if
lim o0 d(™"(x), 0™ "(y)) = 0

® Q:Given x = (x0, x1,...),¥y = (Yo, y1,...) € X = I'@(Y,g), when is
X~y y?

® A: If and only if, for all € > 0 there is an N s.t. for all
n>N,d(xn,yn) <e




Given x,y € X, we say x ~, y are unstably equivalent if
lim o0 d(™"(x), 0™ "(y)) = 0

® Q:Given x = (x0, x1,...),¥y = (Yo, y1,...) € X = I'@(Y,g), when is
X~y y?

® A: If and only if, for all € > 0 there is an N s.t. for all
n>N,d(xn,yn) <e

® The “only if" direction is the result of the local expansiveness of g.



Given x,y € X, we say x ~, y are unstably equivalent if
lim o0 d(™"(x), 0™ "(y)) = 0

® Q:Given x = (x0, x1,...),¥y = (Yo, y1,...) € X = I'@(Y,g), when is
X~y y?

® A: If and only if, for all € > 0 there is an N s.t. for all
n>N,d(xn,yn) <e

® The “only if" direction is the result of the local expansiveness of g.

® |ntuitively, we must eventually “choose the same pre-image.”
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® We restrict to a transversal to obtain an étale groupoid GV.

The local unstable sets are homeomorphic to R?

The local stable sets are totally disconnected.

Restricting GY to a clopen local stable set yields a Morita Equivalent
Groupoid G, with totally disconnected equivalence classes:

Gu ={(x,y)x ~uy,x,y € X°((2,2,2,...),¢)}

where z is the fixed point of g.
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® Note, (X, ) has fixed point (1,1,1,...)
® Then,

Gu(X,0) = {0, Y)Ix ~uy,x,y € X3((1,1,1,...),€) }

where
X°((1,1,1,...),¢) = {(vo, y1, Y2, - - )|yo = 1}.



®let Y=S'CC,g:z+— z%and (X,p) = ILm(Y,g).
® Note, (X, ) has fixed point (1,1,1,...)
® Then,

g,_,(X,QD) = {(Xa)’)’X ~uY, X,y € XS((]-a L1.. .),6)}
where

X°((1,1,1,...),¢) = {(vo, y1, Y2, - - )|yo = 1}.
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® We can also view Y =S >~ R/Z, g:z+ 2z

® Recall the full 2-shift (X013, ) of two-sided binary sequences with
the map: o((xn))x = Xik+1

® We can characterize G, using the Markov partition,

7 (X013,0) = @(R/Z,z — 22)

(oo XxCaXo1.X0X1X2 « . .) = (XC1X2w vy XOX_1Xo2 e v oy XIXQX—1X_2 .. .)

o If x=(0,.20,.2120, .222120,...) and y = (0, .wp, .wiwp, .wawiwy, . ..)
represented in binary then x ~, y if and only either:
@ For some K, z, = wy for all k > K.
@ For some K, z(wx) = 0 for all k > K and wi(zx) =1, for all k > K.
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e Let X = {0,1}",0 := {add 1 with carry-over}
®eg
9(0,0,0,...) = (1,0,0,0,...)

©(1,0,0,...) = (0,1,0,0,...)
o(1,1,1,1,...) = (0,0,0,0,...)

Given a dynamical system (X, ¢) and x,y € X, we say x ~pjr ¥ if there
exists and n € Z such that ¢"(x) = y.

® eg.

(1,1,1,...) ~omit (0,0,0,...) ~omit (1,0,0,0,...) ~omir (0,1,0,0,...)
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e If Y =S1, G =7, and g(z) = 22, then g.(Z) = 2Z,= gl(Z) = Y,
and G/G; = Z /7.
® The associated odometer is:

Zr~ (ILm(Z/ZjZ7 coset inclusion)

=7~ (Z)Z — T)27 « TJAT « 7/8T « - -- = 7).



® Representing the cosets in binary, we have:
7)27 = {0,1}, Z/4Z = {00, 10,01, 11},

7./8Z = {000, 100,010, 110, ... }etc.,

so that
Zy = (X0, X0X1, X0X1X2, - - -)

for x; € {0,1} and the generator 1 € m1(Y) = Z acts on Z; by
1. (Xo + 2Z, XoX1 + 4Z, XoX1X2 + 8Z, .. ) =

(1 “+ Xo +2Z, 1 + XoX1 +4Z,1 + XgXx1X2 +8Z,. . )



e A flat manifold Y with a locally expansive n-fold cover g determines
two dynamical systems:
@ The Wieler Solenoid Iirg(Y,g) with groupoid G,
® The odometer 71(Y) ~ lim (m1(Y)/gl(m1(Y), &) with groupoid
gorbit
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example:

gu = gorbit
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® If Y is orientable and dimY = d, Poincaré Duality yields:

lim(H.(Y),g!) = lim(H'*(Y), &%),



® If Y is orientable and dimY = d, Poincaré Duality yields:

lim(H.(Y),g!) = lim(H'*(Y), &%),

For Y an oriented flat d-manifold,

H.(G") = H*(X)

® Note: Doesn’t hold when Y is not orientable
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Given Y flat, g a locally expansive d—fold cover, and
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K*(Cr*(gorbit)) = “_n;(K*(Y)7g!)

® Then
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Given Y flat, g a locally expansive d—fold cover, and
m1(Y) ~ lim (wl(Y)/g;{(m(Y)), iJJ-+1> the associated odometer,

K*(Cr*(gorbit)) = “_n;(K*(Y)7g!)

® Then
K (CF(GY) = Ku(CE (Gombir)) = lim(K.(Y). &)

® If Y is spin© :
. ~ I *+d *

where g* is the induced map on K-theory
® Since X = IM(Y,g) :

K*H9(X) = lim(K*+9(Y), g").



For Y a spin© flat n-manifold,

K(CF(G")) = K (X)

Doesn't hold in general when Y is not spin©



