Wieler Solenoids from Flat Manifolds Part 2: The Unstable Groupoid

Levi Lorenzo CU-Boulder

May 14, 2022

Acknowledgments

- This work results from a Summer 2021 REU along with: Rachel Chaiser, Maeve Coates Welsh, José Cortes, Robin Deeley, Annikah Farner, Jamal Giornozi, Robi Huq, Maggie Reardon, Andrew Stocker
- This work supported by NSF grant 2000057

Flat Manifold Inverse Limits

Let Y be a flat d-manifold and g a locally expansive n-fold cover. Let $(X,\varphi)=\varliminf(Y,g),$ i.e.

$$X = \{(y_0, y_1, \dots) | y_i \in Y, g(y_{i+1}) = y_i\}$$

$$\varphi((y_0, y_1, y_2, \dots)) = (g(y_0), g(y_1), g(y_2), \dots) = (g(y_0), y_0, y_1, \dots)$$

$$\varphi^{-1}(y_0, y_1, y_2, \dots) = (y_1, y_2, \dots)$$

Definition

Definition

Given $x, y \in X$, we say $x \sim_u y$ are **unstably equivalent** if $\lim_{n\to\infty} d(\varphi^{-n}(x), \varphi^{-n}(y)) = 0$

• Q:Given $x = (x_0, x_1, ...), y = (y_0, y_1, ...) \in X = \varprojlim(Y, g)$, when is $x \sim_{u} y$?

Definition

- Q:Given $x = (x_0, x_1, ...), y = (y_0, y_1, ...) \in X = \varprojlim(Y, g)$, when is $x \sim_{u} y$?
- A: If and only if, for all $\varepsilon > 0$ there is an N s.t. for all $n \ge N$, $d(x_n, y_n) < \varepsilon$

Definition

- Q:Given $x = (x_0, x_1, ...), y = (y_0, y_1, ...) \in X = \varprojlim(Y, g)$, when is $x \sim_{u} y$?
- A: If and only if, for all $\varepsilon > 0$ there is an N s.t. for all $n \ge N$, $d(x_n, y_n) < \varepsilon$
- The "only if" direction is the result of the local expansiveness of g.

Definition

- Q:Given $x = (x_0, x_1, ...), y = (y_0, y_1, ...) \in X = \varprojlim(Y, g)$, when is $x \sim_{u} y$?
- A: If and only if, for all $\varepsilon > 0$ there is an N s.t. for all $n \ge N$, $d(x_n, y_n) < \varepsilon$
- The "only if" direction is the result of the local expansiveness of g.
- Intuitively, we must eventually "choose the same pre-image."

• We restrict to a transversal to obtain an étale groupoid \mathcal{G}^u .

- We restrict to a transversal to obtain an étale groupoid \mathcal{G}^u .
- ullet The local unstable sets are homeomorphic to \mathbb{R}^d

- We restrict to a transversal to obtain an étale groupoid \mathcal{G}^u .
- The local unstable sets are homeomorphic to \mathbb{R}^d
- The local stable sets are totally disconnected.

- We restrict to a transversal to obtain an étale groupoid \mathcal{G}^u .
- The local unstable sets are homeomorphic to \mathbb{R}^d
- The local stable sets are totally disconnected.
- Restricting \mathcal{G}^u to a clopen local stable set yields a Morita Equivalent Groupoid \mathcal{G}_u with totally disconnected equivalence classes:

- We restrict to a transversal to obtain an étale groupoid \mathcal{G}^u .
- The local unstable sets are homeomorphic to \mathbb{R}^d
- The local stable sets are totally disconnected.
- Restricting \mathcal{G}^u to a clopen local stable set yields a Morita Equivalent Groupoid \mathcal{G}_u with totally disconnected equivalence classes:

Definition (Unstable Groupoid)

$$\mathcal{G}_u = \{(x, y) | x \sim_u y, x, y \in X^s((z, z, z, \ldots), \varepsilon)\}$$

where z is the fixed point of g.

• Let $Y = \mathbf{S}^1 \subseteq \mathbb{C}, g : z \mapsto z^2$ and $(X, \varphi) = \varprojlim(Y, g)$.

- Let $Y = \mathbf{S}^1 \subseteq \mathbb{C}, g : z \mapsto z^2$ and $(X, \varphi) = \varprojlim (Y, g)$.
- Note, (X, φ) has fixed point $(1, 1, 1, \ldots)$

- Let $Y = \mathbf{S}^1 \subseteq \mathbb{C}, g : z \mapsto z^2$ and $(X, \varphi) = \underline{\lim}(Y, g)$.
- Note, (X, φ) has fixed point $(1, 1, 1, \ldots)$
- Then,

$$\mathcal{G}_u(X,\varphi) = \{(x,y)|x \sim_u y, x, y \in X^s((1,1,1,\ldots),\varepsilon)\}$$

where

$$X^{s}((1,1,1,\ldots),\varepsilon) = \{(y_0,y_1,y_2,\ldots)|y_0=1\}.$$

- Let $Y = \mathbf{S}^1 \subseteq \mathbb{C}, g : z \mapsto z^2$ and $(X, \varphi) = \varprojlim (Y, g)$.
- Note, (X, φ) has fixed point $(1, 1, 1, \ldots)$
- Then,

$$\mathcal{G}_u(X,\varphi) = \{(x,y)|x \sim_u y, x, y \in X^s((1,1,1,\ldots),\varepsilon)\}$$

where

$$X^{s}((1,1,1,\ldots),\varepsilon) = \{(y_0,y_1,y_2,\ldots)|y_0=1\}.$$

• Given $(x, y) \in X^s((1, 1, ...), \varepsilon) \times X^s((1, 1, 1, ...), \varepsilon), x \sim_u y$ if and only if for each $\varepsilon > 0$, there is an N such that for all $n \geq N, d(x_n, y_n) < \varepsilon$.

- Let $Y = \mathbf{S}^1 \subseteq \mathbb{C}, g : z \mapsto z^2$ and $(X, \varphi) = \varprojlim (Y, g)$.
- Note, (X, φ) has fixed point $(1, 1, 1, \ldots)$
- Then,

$$\mathcal{G}_{u}(X,\varphi) = \{(x,y)|x \sim_{u} y, x, y \in X^{s}((1,1,1,\ldots),\varepsilon)\}$$

where

$$X^{s}((1,1,1,\ldots),\varepsilon) = \{(y_0,y_1,y_2,\ldots)|y_0=1\}.$$

• Given $(x, y) \in X^s((1, 1, ...), \varepsilon) \times X^s((1, 1, 1, ...), \varepsilon), x \sim_u y$ if and only if for each $\varepsilon > 0$, there is an N such that for all $n \geq N, d(x_n, y_n) < \varepsilon$.

• We can also view $Y = \mathbf{S}^1 \cong \mathbb{R}/\mathbb{Z}, \ g: z \mapsto 2z$

- We can also view $Y = \mathbf{S}^1 \cong \mathbb{R}/\mathbb{Z}, \ g: z \mapsto 2z$
- Recall the full 2-shift $(\Sigma_{\{0,1\}}, \sigma)$ of two-sided binary sequences with the map: $\sigma((x_n))_k = x_{k+1}$

- We can also view $Y = \mathbf{S}^1 \cong \mathbb{R}/\mathbb{Z}, \ g: z \mapsto 2z$
- Recall the full 2-shift $(\Sigma_{\{0,1\}}, \sigma)$ of two-sided binary sequences with the map: $\sigma((x_n))_k = x_{k+1}$
- We can characterize G_u using the Markov partition,

$$\pi: (\Sigma_{\{0,1\}}, \sigma) o \varprojlim (\mathbb{R}/\mathbb{Z}, z \mapsto 2z)$$

$$\pi(\ldots x_{-2}x_{-1}.x_0x_1x_2\ldots) = (.x_{-1}x_{-2}\ldots,.x_0x_{-1}x_{-2}\ldots,.x_1x_0x_{-1}x_{-2}\ldots)$$

- If $x = (0, .z_0, .z_1z_0, .z_2z_1z_0, ...)$ and $y = (0, .w_0, .w_1w_0, .w_2w_1w_0, ...)$ represented in binary then $x \sim_u y$ if and only either:
 - **1** For some $K, z_k = w_k$ for all $k \ge K$.
 - 2 For some $K, z_k(w_k) = 0$ for all $k \ge K$ and $w_k(z_k) = 1$, for all $k \ge K$.

• Let $X = \{0,1\}^{\mathbb{N}}, \Theta := \{\text{add } 1 \text{ with carry-over}\}$

- Let $X = \{0,1\}^{\mathbb{N}}, \Theta := \{\text{add } 1 \text{ with carry-over}\}$
- e.g.

$$\Theta(0,0,0,\ldots) = (1,0,0,0,\ldots)$$

$$\Theta(1,0,0,\ldots) = (0,1,0,0,\ldots)$$

$$\Theta(1,1,1,1,\ldots) = (0,0,0,0,\ldots)$$

- Let $X = \{0,1\}^{\mathbb{N}}, \Theta := \{\text{add } 1 \text{ with carry-over}\}$
- e.g.

$$\Theta(0,0,0,\ldots) = (1,0,0,0,\ldots)$$

$$\Theta(1,0,0,\ldots) = (0,1,0,0,\ldots)$$

$$\Theta(1,1,1,1,\ldots) = (0,0,0,0,\ldots)$$

Definition (Orbit Equivalence)

Given a dynamical system (X, φ) and $x, y \in X$, we say $x \sim_{orbit} y$ if there exists and $n \in \mathbb{Z}$ such that $\varphi^n(x) = y$.

- Let $X = \{0,1\}^{\mathbb{N}}, \Theta := \{\text{add } 1 \text{ with carry-over}\}$
- e.g.

$$\Theta(0,0,0,\ldots) = (1,0,0,0,\ldots)$$

$$\Theta(1,0,0,\ldots) = (0,1,0,0,\ldots)$$

$$\Theta(1,1,1,1,\ldots) = (0,0,0,0,\ldots)$$

Definition (Orbit Equivalence)

Given a dynamical system (X, φ) and $x, y \in X$, we say $x \sim_{orbit} y$ if there exists and $n \in \mathbb{Z}$ such that $\varphi^n(x) = y$.

• e.g.

$$(1,1,1,\ldots) \sim_{\textit{orbit}} (0,0,0,\ldots) \sim_{\textit{orbit}} (1,0,0,0,\ldots) \sim_{\textit{orbit}} (0,1,0,0,\ldots)$$

• Given $x = (w_n), y = (z_n) \in \{0,1\}^{\mathbb{N}}$, when is $x \sim_{orbit} y$?

- Given $x = (w_n), y = (z_n) \in \{0,1\}^{\mathbb{N}}$, when is $x \sim_{orbit} y$?
- A: if and only either:
 - **1** For some $K, z_k = w_k$ for all $k \geq K$.
 - 2 For some $K, z_k(w_k) = 0$ for all $k \ge K$ and $w_k(z_k) = 1$, for all $k \ge K$.

- Given $x = (w_n), y = (z_n) \in \{0,1\}^{\mathbb{N}}$, when is $x \sim_{orbit} y$?
- A: if and only either:
 - **1** For some $K, z_k = w_k$ for all $k \ge K$.
 - 2 For some $K, z_k(w_k) = 0$ for all $k \ge K$ and $w_k(z_k) = 1$, for all $k \ge K$.
- Define

$$\mathcal{G}_{orbit} = \{(x, y) | x, y \in \{0, 1\}^{\mathbb{N}}, x \sim_{orbit} y\}$$

- Given $x = (w_n), y = (z_n) \in \{0,1\}^{\mathbb{N}}$, when is $x \sim_{orbit} y$?
- A: if and only either:
 - **1** For some $K, z_k = w_k$ for all $k \ge K$.
 - 2 For some $K, z_k(w_k) = 0$ for all $k \ge K$ and $w_k(z_k) = 1$, for all $k \ge K$.
- Define

$$\mathcal{G}_{orbit} = \{(x, y) | x, y \in \{0, 1\}^{\mathbb{N}}, x \sim_{orbit} y\}$$

• In fact $\mathcal{G}_{orbit}\cong\mathcal{G}_u$ via

$$((z_n),(w_n))\mapsto$$

$$((1, \pi(.z_000...), \pi(.z_1z_0...), ...), (1, \pi(.w_000...), \pi(.w_1w_000...), ...)$$

- Given $x = (w_n), y = (z_n) \in \{0,1\}^{\mathbb{N}}$, when is $x \sim_{orbit} y$?
- A: if and only either:
 - 1 For some $K, z_k = w_k$ for all $k \ge K$.
 - 2 For some $K, z_k(w_k) = 0$ for all $k \ge K$ and $w_k(z_k) = 1$, for all $k \ge K$.
- Define

$$\mathcal{G}_{orbit} = \{(x, y) | x, y \in \{0, 1\}^{\mathbb{N}}, x \sim_{orbit} y\}$$

• In fact $\mathcal{G}_{orbit}\cong\mathcal{G}_u$ via

$$((z_n),(w_n))\mapsto$$

$$((1, \pi(.z_000...), \pi(.z_1z_0...), ...), (1, \pi(.w_000...), \pi(.w_1w_000...), ...)$$

• Let Y be a flat d-manifold, g a locally expansive n-fold cover and $G = \pi_1(Y)$.

- Let Y be a flat d-manifold, g a locally expansive n-fold cover and $G = \pi_1(Y)$.
- Define $G_j = g_*^j(G) \subseteq G$, which gives

$$G = G_0 \xrightarrow{g_*} G_1 \xrightarrow{g_*} G_2 \dots$$

- Let Y be a flat d-manifold, g a locally expansive n-fold cover and $G = \pi_1(Y)$.
- Define $G_j = g_*^j(G) \subseteq G$, which gives

$$\textit{G} = \textit{G}_0 \xrightarrow{\textit{g}_*} \textit{G}_1 \xrightarrow{\textit{g}_*} \textit{G}_2 \dots$$

And:

$$\Omega = \varprojlim (G/G_j, i_j^{j+1}) = G/G_0 \stackrel{i_0^1}{\longleftarrow} G/G_1 \stackrel{i_1^2}{\longleftarrow} G/G_2 \stackrel{\cdots}{\longleftarrow}$$
 with $i_i^{j+1}: G_i \to G_{i+1}$ given by $i_i^{j+1}(gG_i) = gG_{i+1}$.

- Let Y be a flat d-manifold, g a locally expansive n-fold cover and $G = \pi_1(Y)$.
- Define $G_j = g_*^j(G) \subseteq G$, which gives

$$\textit{G} = \textit{G}_0 \xrightarrow{\textit{g}_*} \textit{G}_1 \xrightarrow{\textit{g}_*} \textit{G}_2 \dots$$

And:

$$\Omega = \varprojlim (G/G_j, i_j^{j+1}) = G/G_0 \stackrel{i_0^1}{\leftarrow} G/G_1 \stackrel{i_1^2}{\leftarrow} G/G_2 \stackrel{\cdots}{\leftarrow}$$

with $i_j^{j+1}: G_j \to G_{j+1}$ given by $i_j^{j+1}(gG_j) = gG_{j+1}$.

• We obtain $G \curvearrowright \Omega$ via

$$h \cdot (g_0 G_0, g_1 G_1, g_2 G_2, \ldots) = (hg_0 G_0, hg_1 G_1, hg_2 G_2, \ldots)$$

- Let Y be a flat d-manifold, g a locally expansive n-fold cover and $G = \pi_1(Y)$.
- Define $G_j = g_*^j(G) \subseteq G$, which gives

$$G = \textit{G}_0 \xrightarrow{\textit{g}_*} \textit{G}_1 \xrightarrow{\textit{g}_*} \textit{G}_2 \dots$$

And:

$$\Omega = \varprojlim (G/G_j, i_j^{j+1}) = G/G_0 \stackrel{i_0^1}{\leftarrow} G/G_1 \stackrel{i_1^2}{\leftarrow} G/G_2 \stackrel{\cdots}{\leftarrow}$$

with $i_j^{j+1}: G_j \rightarrow G_{j+1}$ given by $i_j^{j+1}(gG_j) = gG_{j+1}$.

• We obtain $G \curvearrowright \Omega$ via

$$h \cdot (g_0 G_0, g_1 G_1, g_2 G_2, \ldots) = (hg_0 G_0, hg_1 G_1, hg_2 G_2, \ldots)$$

Motivating Example

• If $Y = \mathbf{S}^1$, $G = \mathbb{Z}$, and $g(z) = z^2$, then $g_*(\mathbb{Z}) = 2\mathbb{Z}$, $= g_*^j(\mathbb{Z}) = 2^j\mathbb{Z}$, and $G/G_i = \mathbb{Z}/2^j\mathbb{Z}$.

Motivating Example

- If $Y = \mathbf{S}^1$, $G = \mathbb{Z}$, and $g(z) = z^2$, then $g_*(\mathbb{Z}) = 2\mathbb{Z}$, $= g_*^j(\mathbb{Z}) = 2^j\mathbb{Z}$, and $G/G_j = \mathbb{Z}/2^j\mathbb{Z}$.
- The associated odometer is:

$$\begin{split} \mathbb{Z} \curvearrowright & (\varprojlim(\mathbb{Z}/2^j\mathbb{Z}, \mathsf{coset inclusion}) \\ &= \mathbb{Z} \curvearrowright (\mathbb{Z}/\mathbb{Z} \leftarrow \mathbb{Z}/2\mathbb{Z} \leftarrow \mathbb{Z}/4\mathbb{Z} \leftarrow \mathbb{Z}/8\mathbb{Z} \leftarrow \cdots \cong \mathbb{Z}_2). \end{split}$$

Example cont

Representing the cosets in binary, we have:

$$\label{eq:Z2Z} \begin{split} \mathbb{Z}/2\mathbb{Z} &= \{0,1\}, \ \mathbb{Z}/4\mathbb{Z} = \{00,10,01,11\}, \\ \mathbb{Z}/8\mathbb{Z} &= \{000,100,010,110,\ldots\} \text{etc.}, \end{split}$$

so that

$$\mathbb{Z}_2 = (x_0, x_0 x_1, x_0 x_1 x_2, \ldots)$$

for $x_i \in \{0,1\}$ and the generator $1 \in \pi_1(Y) \cong \mathbb{Z}$ acts on \mathbb{Z}_2 by

$$1 \cdot (x_0 + 2\mathbb{Z}, x_0 x_1 + 4\mathbb{Z}, x_0 x_1 x_2 + 8\mathbb{Z}, \dots) =$$

$$(1 + x_0 + 2\mathbb{Z}, 1 + x_0 x_1 + 4\mathbb{Z}, 1 + x_0 x_1 x_2 + 8\mathbb{Z}, \dots)$$

- A flat manifold Y with a locally expansive n-fold cover g determines two dynamical systems:
 - 1 The Wieler Solenoid $\varprojlim(\textbf{Y},\textbf{g})$ with groupoid \mathcal{G}_u
 - 2 The odometer $\pi_1(\mathbf{Y}) \curvearrowright \varprojlim (\pi_1(\mathbf{Y})/g_*^{\mathbf{j}}(\pi_1(\mathbf{Y}),\mathbf{i}_{\mathbf{j}}^{\mathbf{j}+1})$ with groupoid $\mathcal{G}_{\text{orbit}}$

- A flat manifold Y with a locally expansive n-fold cover g determines two dynamical systems:
 - 1 The Wieler Solenoid $\varprojlim(Y,g)$ with groupoid \mathcal{G}_u
 - 2 The odometer $\pi_1(\mathbf{Y}) \curvearrowright \varprojlim (\pi_1(\mathbf{Y})/\mathbf{g}_*^{\mathbf{j}}(\pi_1(\mathbf{Y}),\mathbf{i}_{\mathbf{j}}^{\mathbf{j}+1})$ with groupoid $\mathcal{G}_{\text{orbit}}$
- Each solenoid admits a Markov Partition

$$\pi: (\{0,1,\ldots,n-1\}^{\mathbb{Z}} \cong (G/G_1)^{\mathbb{Z}},\sigma) \to \varprojlim(Y,g)$$

Additionally,

$$|g_*^j(\pi_1(Y))/g_*^{j+1}(\pi_1(Y))| = n.$$

- A flat manifold Y with a locally expansive n-fold cover g determines two dynamical systems:
 - 1 The Wieler Solenoid $\varprojlim(Y,g)$ with groupoid \mathcal{G}_u
 - 2 The odometer $\pi_1(\mathbf{Y}) \curvearrowright \varprojlim (\pi_1(\mathbf{Y})/\mathbf{g}_*^{\mathbf{j}}(\pi_1(\mathbf{Y}), \mathbf{i}_{\mathbf{j}}^{\mathbf{j}+1})$ with groupoid $\mathcal{G}_{\text{orbit}}$
- Each solenoid admits a Markov Partition

$$\pi: (\{0,1,\ldots,n-1\}^{\mathbb{Z}} \cong (G/G_1)^{\mathbb{Z}},\sigma) \to \varprojlim(Y,g)$$

Additionally,

$$|g_*^j(\pi_1(Y))/g_*^{j+1}(\pi_1(Y))| = n.$$

 The Markov Partition facilitates, as described in the 2-solenoid example:

$$\mathcal{G}_u \cong \mathcal{G}_{orbit}$$

- A flat manifold Y with a locally expansive n-fold cover g determines two dynamical systems:
 - 1 The Wieler Solenoid $\varprojlim(Y,g)$ with groupoid \mathcal{G}_u
 - 2 The odometer $\pi_1(\mathbf{Y}) \curvearrowright \varprojlim (\pi_1(\mathbf{Y})/\mathbf{g}_*^{\mathbf{j}}(\pi_1(\mathbf{Y}), \mathbf{i}_{\mathbf{j}}^{\mathbf{j}+1})$ with groupoid $\mathcal{G}_{\text{orbit}}$
- Each solenoid admits a Markov Partition

$$\pi: (\{0,1,\ldots,n-1\}^{\mathbb{Z}} \cong (G/G_1)^{\mathbb{Z}},\sigma) \to \varprojlim(Y,g)$$

Additionally,

$$|g_*^j(\pi_1(Y))/g_*^{j+1}(\pi_1(Y))| = n.$$

 The Markov Partition facilitates, as described in the 2-solenoid example:

$$\mathcal{G}_u \cong \mathcal{G}_{orbit}$$

Theorem (Scarparo(special case))

For Y flat, g a locally expansive n-fold cover, and $\pi_1(Y) \curvearrowright \varprojlim \left(\pi_1(Y)/g_*^j(\pi_1(Y)), i_j^{j+1}\right)$ the associated odometer,

$$H_*(\mathcal{G}_{orbit}) \cong \varinjlim(H_*(Y)), g!)$$

where g! is the transfer map on homology.

Theorem (Scarparo(special case))

For Y flat, g a locally expansive n-fold cover, and $\pi_1(Y) \curvearrowright \varprojlim \left(\pi_1(Y)/g_*^j(\pi_1(Y)), i_j^{j+1}\right)$ the associated odometer,

$$H_*(\mathcal{G}_{orbit}) \cong \varinjlim(H_*(Y)), g!)$$

where g! is the transfer map on homology.

Then

$$H_*(\mathcal{G}^u) \cong H_*(\mathcal{G}_{orbit}) \cong \varinjlim (H_*(Y), g!).$$

Theorem (Scarparo(special case))

For Y flat, g a locally expansive n-fold cover, and $\pi_1(Y) \curvearrowright \varprojlim \left(\pi_1(Y)/g_*^j(\pi_1(Y)), i_j^{j+1}\right)$ the associated odometer,

$$H_*(\mathcal{G}_{orbit}) \cong \varinjlim(H_*(Y)), g!)$$

where g! is the transfer map on homology.

Then

$$H_*(\mathcal{G}^u) \cong H_*(\mathcal{G}_{orbit}) \cong \underline{\lim}(H_*(Y), g!).$$

• Since $X = \underline{\lim}(Y, g)$,

$$H^*(X) \cong \underline{\lim}(H^*(Y), g^*),$$

where g^* is the induced map on cohomology.

Theorem (Scarparo(special case))

For Y flat, g a locally expansive n-fold cover, and $\pi_1(Y) \curvearrowright \varprojlim \left(\pi_1(Y)/g_*^j(\pi_1(Y)), i_j^{j+1}\right)$ the associated odometer,

$$H_*(\mathcal{G}_{orbit}) \cong \varinjlim(H_*(Y)), g!)$$

where g! is the transfer map on homology.

Then

$$H_*(\mathcal{G}^u) \cong H_*(\mathcal{G}_{orbit}) \cong \underline{\lim}(H_*(Y), g!).$$

• Since $X = \underline{\lim}(Y, g)$,

$$H^*(X) \cong \underline{\lim}(H^*(Y), g^*),$$

where g^* is the induced map on cohomology.

• If Y is orientable and dimY = d, Poincaré Duality yields:

$$\varinjlim(H_*(Y),g!)\cong \varinjlim(H^{d-*}(Y),g^*),$$

• If Y is orientable and dim Y = d, Poincaré Duality yields:

$$\varinjlim(H_*(Y),g!)\cong \varinjlim(H^{d-*}(Y),g^*),$$

Theorem

For Y an oriented flat d-manifold,

$$H_*(\mathcal{G}^u) \cong H^{d-*}(X)$$

Note: Doesn't hold when Y is not orientable

Theorem (Scarparo, Baum-Connes, Carrión, Green, etc.)

Given Y flat, g a locally expansive d-fold cover, and $\pi_1(Y) \curvearrowright \varprojlim \left(\pi_1(Y)/g_*^j(\pi_1(Y)), i_j^{j+1}\right)$ the associated odometer,

$$K_*(C_r^*(\mathcal{G}_{orbit})) \cong \varinjlim (K_*(Y), g!)$$

Theorem (Scarparo, Baum-Connes, Carrión, Green, etc.)

Given Y flat, g a locally expansive d-fold cover, and $\pi_1(Y) \curvearrowright \varprojlim \left(\pi_1(Y)/g_*^j(\pi_1(Y)), i_j^{j+1}\right)$ the associated odometer,

$$K_*(C_r^*(\mathcal{G}_{orbit})) \cong \varinjlim(K_*(Y), g!)$$

Then

$$K_*(C_r^*(\mathcal{G}^u)) \cong K_*(C_r^*(\mathcal{G}_{orbit})) \cong \varinjlim (K_*(Y), g!)$$

Theorem (Scarparo, Baum-Connes, Carrión, Green, etc.)

Given Y flat, g a locally expansive d-fold cover, and $\pi_1(Y) \curvearrowright \varprojlim \left(\pi_1(Y)/g_*^j(\pi_1(Y)), i_j^{j+1}\right)$ the associated odometer,

$$K_*(C_r^*(\mathcal{G}_{orbit})) \cong \varinjlim(K_*(Y), g!)$$

Then

$$K_*(C_r^*(\mathcal{G}^u)) \cong K_*(C_r^*(\mathcal{G}_{orbit})) \cong \varinjlim (K_*(Y), g!)$$

• If Y is spin^c:

$$\varinjlim(K_*(Y),g!)\cong \varinjlim(K^{*+d}(Y),g^*),$$

where g^* is the induced map on K-theory

Theorem (Scarparo, Baum-Connes, Carrión, Green, etc.)

Given Y flat, g a locally expansive d-fold cover, and $\pi_1(Y) \curvearrowright \varprojlim \left(\pi_1(Y)/g_*^j(\pi_1(Y)), i_i^{j+1}\right)$ the associated odometer,

$$K_*(C_r^*(\mathcal{G}_{orbit})) \cong \varinjlim(K_*(Y), g!)$$

Then

$$K_*(C_r^*(\mathcal{G}^u)) \cong K_*(C_r^*(\mathcal{G}_{orbit})) \cong \varinjlim(K_*(Y), g!)$$

• If Y is spin^c:

$$\operatorname{lim}(K_*(Y), g!) \cong \operatorname{lim}(K^{*+d}(Y), g^*),$$

where g^* is the induced map on K-theory

• Since $X = \underline{\lim}(Y, g)$:

$$K^{*+d}(X) \cong \underline{\lim}(K^{*+d}(Y), g^*).$$

K-theory cont

Theorem

For Y a spin^c flat n-manifold,

$$K_*(C_r^*(\mathcal{G}^u)) \cong K^{*+d}(X)$$

Doesn't hold in general when Y is not spin^c